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Abstract

Mixed model repeated measures (MMRM) is the most common analysis

approach used in clinical trials for Alzheimer's disease and other progressive

diseases measured with continuous outcomes over time. The model treats time

as a categorical variable, which allows an unconstrained estimate of the mean

for each study visit in each randomized group. Categorizing time in this

way can be problematic when assessments occur off-schedule, as including

off-schedule visits can induce bias, and excluding them ignores valuable infor-

mation and violates the intention to treat principle. This problem has been

exacerbated by clinical trial visits which have been delayed due to the

COVID19 pandemic. As an alternative to MMRM, we propose a constrained

longitudinal data analysis with natural cubic splines that treats time as contin-

uous and uses test version effects to model the mean over time. Compared to

categorical-time models like MMRM and models that assume a proportional

treatment effect, the spline model is shown to be more parsimonious and pre-

cise in real clinical trial datasets, and has better power and Type I error in a

variety of simulation scenarios.
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1 | BACKGROUND

The mixed model repeated measures (MMRM)1 is a common analytic approach for randomized clinical trials with con-
tinuous outcomes collected longitudinally. The MMRM generally assumes that the mean change from baseline in the
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outcome is a linear function of the baseline value of the outcome, time (as a categorical variable reflecting timing of
study visits), and the time-by-treatment interaction. This allows an estimate of the mean at each visit for both groups
without assuming any trend over time. The primary test statistic is typically the estimated difference between group
means at the final visit. The model generally includes no random effects. Instead, residuals are assumed to be correlated
from visit-to-visit within participant. The MMRM is virtually assumption-free concerning the shape of the mean over
time and the correlation structure, which likely explains its broad use in pharmaceutical statistics.

However, the MMRM requires many parameters. If K is the number of visits, MMRM requires 2K mean parameters,
K K�1ð Þ=2 correlation parameters (assuming a general symmetric correlation structure), and K variance parameters
(assuming heterogeneous variance). In this respect, MMRM might be seen to be favoring reduced bias at the cost of
statistical efficiency and power.

Another concern is that clinical trial visits often occur off-schedule. Study protocols generally allow a visit window
(e.g., visits may occur within 2 weeks of a target date). When observations fall outside these windows, investigators are
forced to decide between ignoring data or including it and introducing potential bias due to observations being effec-
tively carried forward or backward to the closest target date.2 The problem of late visits can be exacerbated by
unforeseen interruptions, such as those caused by the COVID19 pandemic. In these situations, it might be advanta-
geous to treat time as continuous, thus allowing the model to be informed by the actual time from baseline, rather than
categorized time.

Alzheimer's clinical trials often employ alternating cognitive test versions (e.g. alternating stories or word lists to be
recalled). These test stimuli versions typically alternate with the visit schedule such that all study participants should be
administered the same sequence of test versions per protocol. The versions are intended to be of similar difficulty. How-
ever, differences in difficulty are apparent by the sawtooth mean trends, synchronized between treatment groups, esti-
mated by MMRM in many Alzheimer's trials. Assuming a smooth parametric mean trend for continuous-time might
fail to capture this explainable variability.

An alternative to MMRM was proposed for clinical trials in autosomal-dominant Alzheimer's disease.3,4 The time
variable is the expected year of symptom onset (EYO) and the placebo group mean is modeled as a monotonically
decreasing step function of EYO. The treatment benefit is assumed to be proportional to the decline, making the model
nonlinear. The model was extended to a multiple outcome model for the final analysis, but the monotonicity and pro-
portional treatment effect assumptions were violated and the model failed to converge.5 More recently, related
nonlinear models have been proposed for clinical trials for sporadic Alzheimer's disease by Wang, et al.6 and Raket.7

In this paper, we explore another alternative model for Alzheimer's disease trials, one that treats time as continuous.
We consider natural cubic splines8 to flexibly model the temporal mean trend with fewer parameters than MMRM.
Incorporating splines into random effects models for longitudinal data, and clinical trials in particular, is not novel.9–11

We compare a natural cubic splines model to categorical-time models (MMRM) and models assuming a proportional
treatment effect in three completed Alzheimer's studies and in simulations. We also explore the utility of adjusting for
alternating cognitive test versions with a time-varying covariate. A simulation study is presented to demonstrate the
power and Type I error of each approach. The spline model is shown to provide superior power with good control of
Type I error.

2 | MODEL SPECIFICATIONS

2.1 | Categorical-time mean structure

The first type of mean structure treats time as a categorical variable, as in the MMRM. The response for subject i and
study visit j¼ 1,…,K is modeled as:

Yij ¼ β11 j¼ 1f gþβ21 j¼ 2f gþ�� �þβK1 j¼Kf gþ
γ21 j¼ 2f gþ �� �þ γK1 j¼Kf gð ÞActiveiþϵij,

where “Activei” is 1 if subject i is in the active group and 0 otherwise. The β terms express the mean at each visit in the
placebo group (e.g. the estimated placebo group mean is bβ1 at baseline and bβ2 at the first follow-up) and the γ terms rep-
resent the treatment group difference at each visit. We focus here on the temporal mean structure, but other baseline
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covariate effects can be added with additional terms as usual. Note that the exclusion of a γ1 term constrains the mean
at baseline to be the same for both groups. This is the constraint referred to in constrained longitudinal data analysis
(cLDA).12 This categorical-time mean structure is similar to MMRM, but in MMRM the response variable is the change
from baseline, Y �

ij ¼Yij�Yi1, for j¼ 2,…,K; the baseline score Yi1 is included as a covariate; and the β11 j¼ 1f g term is
dropped. The cLDA parameterization is more efficient than MMRM when baseline observations are subject to
missingness.13 We explore several different variance–covariance structures for the residuals εij as described at the end
of this section.

2.2 | Linear mean structure

Alternatively, time from baseline at visit j can be treated as a continuous variable tj. The linear mean structure
assumes:

Yij ¼ β0þβ1tjþ γtjActiveiþ εij:

The β0 term represents the mean in both groups at baseline, β1 represents the rate of change per month in the control
group and the γ term represents the difference in slopes.

2.3 | Natural cubic spline mean structure

The natural cubic spline8 structure also treats time as continuous. A cubic spline is a function defined
by cubic polynomials that are spliced together at knot locations and the resulting function is restricted to be
continuous and have continuous first and second derivatives. A natural cubic spline has a further constraint
of having a second derivative of zero at the boundaries (i.e. acceleration of the curve is not allowed at the
first and last observation). A spline function f tð Þ can be expressed as a linear combination of basis functions, bk tð Þ,
and weights βk: f tð Þ¼ β0þ

Pm
k¼1βkbk tð Þ. The bk tð Þ basis functions can be numerically determined given the

boundaries, interior knot locations, and the continuity and derivative constraints. In practice, this is a processing
step that does not involve the observed outcomes, akin to calculating t2, t3, etc. for polynomial regression. As with poly-
nomial regression, once the bk tð Þ are determined, the βk weights can be estimated by maximum likelihood estimation.

In our clinical trial context, the natural cubic spline model assumes:

Yij ¼ β0þ
Xm
k¼1

βkbk tj
� �þActivei

Xm
k¼1

γkbk tj
� �þ εij:

where bk tð Þ are the known spline basis functions for a given set of knots and extreme values of t. Interior knots are typi-
cally spaced according to quantiles of t. The resulting curve for the placebo group is defined by the natural cubic spline
f tð Þ¼ β0þ

Pm
k¼1βkbk tj

� �
; while the natural cubic spline g tð Þ¼Pm

k¼1γkbk tj
� �

represents the treatment group difference
over time and is constrained to be zero at time zero. The number of interior knots (m�2) needs to be specified. Given
the known basis functions, estimation of the unknown parameters (βs and γs) is accomplished with maximum likeli-
hood estimation as with the prior two models. Note that the categorical-time mean structure is equivalent to a special
case of the spline parameterization with visit times set to the planned times and knot locations chosen to match the
planned visit times.

Again, as with the other temporal mean structures, additional covariates can be added. In particular, we will add a
time-varying covariate for cognitive test version. The time-varying covariate effect can be interpreted as a version diffi-
culty offset and can be added to the models that assume a suitably smooth parametric tend over time. We also explore
adding the test version effect to categorical-time models, however, we would not expect this to have a large impact
because test versions alternate with the visit categories by design.

Cognitive test version at time t is clearly an exogenous variable, independent of values of the assessment before time
t, and should not bias or otherwise interfere with the interpretation of the treatment effects.14 The schedule of test ver-
sions is typically entirely determined by the protocol and any deviations from the protocol are due to administration
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errors unrelated to prior test performance. Nevertheless, an alternative strategy would be to adjust the scoring rules for
the test version's difficulty level using data external to the trial.

2.4 | Proportional treatment effect

The proportional treatment effect model is of the form

Yij ¼ β0þ β11 j≥ 1f gþβ21 j≥ 2f gþ �� �þβK1 j¼Kf gð Þexp θActiveið Þþ εij:

The mean structure assumption for the placebo group is equivalent to the categorical-time model above, but the active
group is assumed to differ at every visit by a constant factor of exp θð Þ.

2.5 | Variance–covariance assumptions

Since the mean structures in this paper treat time as either categorical or continuous, we explored variance–covariance
assumptions under both paradigms as well. The considered variance–covariance assumptions include:

1. Unstructured: The vector of residuals for individual i εi are assumed to follow a multivariate Gaussian distribution
with mean zero and general symmetric correlation and heterogeneous variance per study visit: εi � ,N 0, VΣVð Þ for
diagonal matrix V and symmetric general matrix Σ,

2. “AR1 Het.”: categorical-time autoregressive order one correlation with heterogeneous variance per visit,
3. “CAR1 Const. Prop.”: continuous-time autoregressive order one correlation with variance function consisting of a

constant a and proportion b: Var εij
� �¼ a2þb2t2ij, where tij is continuous-time from baseline,

4. “CAR1 Exp.”: continuous-time autoregressive order one correlation with Var εij
� �¼ σ2 exp 2δtij

� �
,

5. “Random Intercept”: participant-specific random intercepts with independent and identically distributed Gaussian
residuals,

6. “Random Slope”: participant-specific random intercepts and slopes relative to tij with independent and identically
distributed Gaussian residuals, and

7. “Random Spline”: participant-specific random terms associated with the natural cubic spline basis expansion and
identically distributed Gaussian residuals. In this paper, we only consider two degrees of freedom for the random
spline.

All of the above variance–covariance assumptions and their estimation are detailed in Pinheiro and Bates.15 Non-
linear models are fit by maximum likelihood estimation using the nlme package16 in R.17 Linear models with unstruc-
tured variance–covariance are fit with the lme4 package,18 and other covariance structures are fit with gls function in
the nlme package. The emmeans package19 is used for estimating the means and contrasts of linear models over time
with Sattherwaite degrees of freedom, while parametric resampling of fixed effects (based on their estimated mean and
covariance) is used for the nonlinear models. The ggplot2 package is used for plotting.20 Sample code for the simulation
study is provided in the Appendix S1.

3 | MODEL DEMONSTRATIONS

We demonstrate applications of the models using three completed Alzheimer's disease clinical trials. The first is the
study of Donepezil and Vitamin E for Mild Cognitive Impairment (MCI).21 For these analyses, we focus on the data
from participants randomized to Donepezil or placebo. The second is a study of the fyn kinase inhibitor AZD0530 in
mild Alzheimer dementia.22 The third is a study of intranasal insulin in MCI and mild Alzheimer dementia.23 Two
intranasal devices were used in this study because the first was unreliable. We focus on data from the second device.

None of these studies met their primary endpoint, but Donepezil showed a benefit in the first months of the MCI
trial that seemed to diminish by the final 36-month time point. The primary analysis approach for the MCI trial was a
Cox proportional hazard model24 of time-to-dementia, however, the proportional hazard assumption was violated. For
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all three trials, we demonstrate the modeling approaches using the Alzheimer's Disease Assessment Scale–Cognitive
Subscale (ADAS-Cog).25 For the MCI trial, we see violations of the proportional treatment effect assumption for
ADAS-Cog as well.

Figure 1 shows the estimated mean trends from each study using the four approaches assuming unstructured
variance–covariance. We can see that the spline model with two degrees of freedom (one interior knot) and a time-
varying effect for test version estimates trends that are very similar to the categorical-time model (left); while the pro-
portional effect models demonstrate less separation between groups in Fyn and MCI. The proportional effect model
estimates the effect in the MCI trial to be in the opposite direction of all the other models, perhaps due to the violation
of the proportional effect assumption.

FIGURE 1 Modeled mean ADAS-Cog for each study. All models assume unstructured variance–covariance. ADAS-Cog, Alzheimer's

Disease Assessment Scale–Cognitive Subscale; MCI, mild cognitive impairment

DONOHUE ET AL. 5
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Figure 2 shows the treatment group contrast over time as estimated by the four approaches in the three trials. In
general, the spline model appears to be a reasonably smoothed version of the trend estimated using categorical-time;
while the proportional treatment effect model fails to show consistent mean trends where these assumptions are
violated (i.e. the Fyn and MCI studies) and treatment effect estimates seem biased toward the null relative to the other
models applied to Fyn and Insulin. In addition, again we see the proportional effect model estimating an effect in the
opposite direction of other models when applied to the MCI trial.

We also considered Akaike Information Criterion26 for each model estimated by maximum likelihood to assess rela-
tive parsimony and predictive value (Figure A1 and Table A1). In general, the categorical-time unstructured variance–
covariance assumption was preferred even with continuous-time mean structures, followed closely by the random
slopes assumption. Focusing on models assuming unstructured variance–covariance (bottom panel), the spline model
with two degrees of freedom (one interior knot) and version effect attained the smallest AIC for the Fyn and Insulin
studies. The proportional model was preferred for MCI, but the proportional effect assumption is violated in this trial
and the resulting treatment effect estimate is in the opposite direction of other models. Considering that the spline with

FIGURE 2 Modeled treatment group contrast in ADAS-Cog for each study. All models assume unstructured variance–covariance.
ADAS-Cog, Alzheimer's Disease Assessment Scale–Cognitive Subscale; MCI, mild cognitive impairment

6 DONOHUE ET AL.
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two degrees of freedom and version effect provide fits that are similar to categorical-time in Figure 1, we concluded that
two degrees of freedom appear to be sufficient to capture enough of the general trend to assess the treatment effect.

The AIC comparisons also show that adding an ADAS-Cog version effect to the spline model with two degrees of
freedom provides a substantial and consistent reduction in AIC (�13.2, �5, �17.4 AIC points for the Fyn, Insulin, and
MCI trials respectively using unstructured variance–covariance). Of note, the categorical-time model without version
effect is preferred over the spline with two degrees of freedom for Fyn and MCI. However, once the version effect is
added, the spline with two degrees of freedom is preferred over categorical in all three studies. Adding a version effect
to the categorical-time model increased AIC or only reduced AIC by a point (3.4, �1, 1.7 AIC points respectively).

4 | SIMULATION STUDIES

We consider four simulation scenarios: (1) MCI or mild Alzheimer dementia (n = 120 per group), (2) MCI only
(n = 250 per group), (3) preclinical Alzheimer's disease (PAD, n = 500 per group), and (4) PAD with a COVID19 pan-
demic disruption in follow-up (n = 500 per group). The first two are derived from the Insulin and MCI studies respec-
tively. Actual participant data regarding baseline covariates (APOE ε4 genotype, Mini-Mental State Exam [MMSE], age)
and follow-up (administered test version [A, B, or C] and missing data) were used. Within each simulated trial, group
assignments are permuted. Note that the simulated visit schedules are consistent with the depiction in Figure 1 (0, 3,
6, 9, 12, 15, and 18months for Insulin and 0, 3, 6, 12, 18, 24, 30, and 36 for MCI). Simulated placebo group outcome
data is generated according to a natural cubic spline model fit to the study data. The model assumes splines with four
degrees of freedom (three interior knots), and covariates for baseline MMSE, APOE ε4 genotype, and age. Residuals are
assumed to have unstructured heterogeneous variance–covariance. The Insulin model also includes an effect for sex.
We do not simulate data from an MMRM because we want the simulated data to be informed by actual time from base-
line. The choice of four degrees of freedom for the simulation model is an arbitrary one intended to differ from the
candidate natural cubic spline analysis model with two degrees of freedom.

The treatment benefit for the MCI study is assumed to be linear, starting at 12 months, reaching a relative benefit of
2.75 ADAS-Cog points at month 36. This delayed onset of treatment benefit might be expected from a disease modifying
therapy, as opposed a symptomatic therapy like Donepezil. For the simulation of a trial in MCI or mild Alzheimer
dementia we assume an immediate linear benefit of 4.25 ADAS-Cog points for the 18-month study, which might be
expected from an intervention like insulin which is believed to have the potential for symptomatic and disease-
modifying effects.

The last two simulation studies are based on Preclinical Alzheimer's Cognitive Composite (PACC)27 data from PAD
participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI; adni.loni.usc.edu). PAD is defined by normal
cognition with evidence of brain amyloid dysregulation. The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biomarkers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of MCI and early Alzheimer's. The simulated PAD
trials include 10 study visits targeted every 6 months for 4.5 years. The simulated observation times are randomly
perturbed, centered around the target time point, according to a normal distribution with standard deviation of
0.8 months. We also simulate a hypothetical PAD trial disrupted by COVID19. The COVID interruption is simulated to
start randomly, based on a random sample of the last six visits, and subjects return to regular visits after a random dura-
tion distributed according to a truncated normal distribution with mean six months, standard deviation three months,
and range four to twelve months. Code for this simulation is provided in Appendix S1, including the ADNI-derived
model parameters needed to replicate the simulation. The treatment benefit for both PAD studies is assumed to be lin-
ear relative to the visit number, starting at the fourth visit, and attaining 1.6 PACC points at the tenth and final visit.
This diminishes the treatment effect relative to time-from-baseline, as might be expected if doses are missed because of
the COVID interruption. Monotone attrition is simulated yielding 30% dropout rate by the final visit. See Appendix
Figure A2 for estimates of the simulated treatment effects estimated from typical simulated trials.

Each of 10,000 simulated trials is analyzed with three mean structures: a categorical-time model, a natural cubic
spline model with two degrees of freedom and test version effect, and a model assuming a proportional treatment bene-
fit. The categorical-time model assumed unstructured heterogeneous variance–covariance. The spline model assumed
four different variance–covariance assumptions: unstructured heterogeneous, random slope, random spline, and
continuous-time autoregressive order one with exponential variance function of time. The proportional model assumes
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a random participant-specific intercept and independent residuals (as described by Wang et al.4), or correlated residuals
with unstructured heterogeneous variance–covariance. The inference for the categorical-time model is based on the
final visit treatment group mean contrast. The inference for the spline model is based on the final target time point (i.e.,
18 months for Mild Alzheimer's dementia or MCI, 36 months for MCI only, and 54 months for both PAD trials). The
inference for the proportional model is based on the estimated proportional treatment effect (which the model assumes

TABLE 1 Simulated power and type I error

Model

Power Type I error

(%) N (%) N

Mild Alzheimer's dementia or MCI; n = 120 per group

Categorical time 82.29 10,000 5.16 10,000

Spline-unstr. 86.66 10,000 5.41 10,000

Spline-random slope 86.10 10,000 5.18 10,000

Spline-random spline 85.81 10,000 4.96 10,000

Spline-CAR1 82.37 10,000 6.69 10,000

Proportional-random int. 95.35 9882 30.32 10,000

Proportional-unstr. 93.00 9204 64.95 9268

MCI only; n = 250 per group

Categorical time 85.32 10,000 5.17 10,000

Spline-unstr. 94.97 10,000 5.40 10,000

Spline-random slope 94.48 10,000 5.18 10,000

Spline-random spline 94.47 10,000 5.14 10,000

Spline-CAR1 84.15 10,000 7.73 10,000

Proportional-random int. 97.08 9788 27.90 10,000

Proportional-unstr. 94.34 8947 62.77 9204

PAD; n = 500 per group

Categorical time 77.23 10,000 4.98 10,000

Spline-unstr. 93.30 10,000 5.56 10,000

Spline-random slope 93.92 10,000 10.73 10,000

Spline-random spline 91.60 10,000 5.24 10,000

Spline-CAR1 90.81 10,000 8.44 10,000

Proportional-random int. 18.52 3331 27.26 9801

Proportional-unstr. 99.91 3388 91.22 9444

PAD-COVID; n = 500 per group

Categorical time 78.38 10,000 5.30 10,000

Spline-unstr. 91.80 10,000 5.34 10,000

Spline-random slope 92.52 10,000 7.06 10,000

Spline-random spline 92.75 10,000 5.38 10,000

Spline-CAR1 90.96 10,000 8.23 10,000

Proportional-random int. 25.18 2407 35.28 9980

Proportional-unstr. 98.24 1766 93.92 9691

Note: Mild Alzheimer's dementia or MCI and MCI only simulations were based on patient characteristics and model estimates from the Insulin and MCI trials.
The PAD simulations are based on patient characteristics and model estimates from ADNI participants. The PAD-COVID simulations add a random
interruption in study visits and treatment due to COVID19. The Spline model is based on natural cubic splines with one internal knot and a time-varying test
version effect. The number of trials in which a p value was obtained is indicated by N.

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; CAR1, continuous-time autoregressive order one correlation with exponential variance
function of time; MCI, mild cognitive impairment; PAD, preclinical Alzheimer's disease; Unstr., unstructured variance–covariance.
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to be constant over time). The Satterthwaite degrees of freedom were used for all contrasts, except for the PAD simula-
tions. Due to computational time of the PAD simulations, Satterthwaite degrees of freedom were only calculated for the
first 100 simulated trials, and for subsequent simulations, the minimum degrees of freedom estimated from the first
100 trials was assumed.

Table 1 summarizes the simulation results. The spline and categorical-time models with unstructured variance–
covariance provide reasonable control of Type I error (<5.56%) and the spline model demonstrated modest to substan-
tial improvement in power in all scenarios without convergence issues. The spline model improved power relative to
the categorical model by 4.37% in the Mild Alzheimer's dementia or MCI simulation, 9.65% in the MCI only simulation,
16.07% in the PAD simulation, and 13.42% in the PAD-COVID simulation.

In contrast, the proportional treatment effect model suffered from Type I error inflation in all scenarios, with Type I
error ranging from 27.26% to 93.92%. The proportional model was also plagued by model fitting issues and provided an
inferential statistic in only 2407/10000 = 24.07% of simulated PAD-COVID trials. Note that the PAD scenarios assumed
non-proportional treatment effects with a delayed onset and placebo mean trends which might cross zero; which might
explain why the model did not converge consistently. The proportional model did not fail to converge as often with the
Type I error simulations, with no treatment effect. Type I error was larger than the power in some scenarios, perhaps
an artifact of the convergence issues. The Type I error remained inflated for the proportional model even when models
with convergence warnings were removed (Appendix Table A2). Other simulations studies assuming proportional
effects have not reported convergence problems with related proportional models,6,7 however, Type I error inflation has
been previously reported.7

5 | DISCUSSION

While models with proportional treatment effects have attracted attention as a purported powerful alternative to MMRM for
Alzheimer's clinical trials, the model assumptions are often violated and the models appear to be subject to severe Type I
error inflation and convergence problems when its assumptions are violated. It is important to note that the proportional
treatment effect assumption is a strong assumption that links benefit to placebo decline and can be violated in many ways. A
disease modifying effect could demonstrate a divergence from the placebo trend in many ways that are not proportional. For
instance, a linear trend benefit would only satisfy the assumption when the placebo trend is also linear.

In contrast, spline models have weaker assumptions regarding the nature of the placebo decline and treatment
effect and can generally be fitted with the same software used to fit linear models like MMRM. The weaker assumptions
of the spline model allow a broad possibility of treatment effects that are not restricted to be linear or proportional rela-
tive to the placebo group mean.

The spline models also show a modest to substantial improvement in power (4.37%–16.07%) compared to
categorical-time models and provide reasonable Type I error control. The power increase is likely due to the reduced
variance of estimates from the simpler spline model. The increase in power seems to be larger for study designs with
more visits, as one might expect since this increases the complexity of the categorical-time mean parameterization.

Because the spline model treats time as continuous, it can accommodate delays in study visits, such as those due to
the COVID19 pandemic. With a categorical-time model, investigators must choose between ignoring delayed visits, car-
rying observations back, or creating new visit categories with depleted observation counts and a mixture of test ver-
sions. The spline model also showed greater power to detect treatment effects compared to the categorical-time model
in the simulated trials with a COVID19 disruption.

In absence of the COVID19 interruption, the MMRM is targeting the randomized group mean difference at
4.5 years. Under the model in which participants are invited back for all visits after the interruption, an MMRM analy-
sis ignoring the COVID19 delay in visits is targeting a different estimand: the randomized group mean difference after
nine irregularly spaced follow-up visits. The test statistic that we explored in the spline analysis, the treatment group
difference at 4.5 years, is therefore more consistent with the uninterrupted study's original estimand.

A drawback of the spline model is the need to specify the number and location of interior knots. In these analyses,
we followed the default software setting, which equally spaces the knots according to the quantiles of observation times.
Of note, the number of knots is understood to be more important than their location, and using quantiles for knot loca-
tions is a broadly recommended approach.28 The natural cubic spline with one interior knot at the median observation
time seems sufficient in the trials and datasets that we explored. Conceptually, one interior knot captures quadratic-like
trends with one inflection point for the placebo group and another for the relative treatment difference. We believe this
degree of flexibility is sufficient to capture the expected trends in Alzheimer's clinical trials. More exploration might be
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required in other applications to ensure a suitable choice of knot locations. Prior clinical trials or natural history studies
can be used to guide this decision, which should be pre-specified in analytic plans.

While unconventional, it appears the combination of categorical-time covariance structures and continuous-time
mean structure is generally preferred and supported by AIC in the trials analyzed. We hypothesize that this is because
of the categorical nature of the Alzheimer's clinical trial visit schedule in which study participants undergo the same
sequence of visits and cognitive test versions. The simulation studies demonstrate better Type I error control for the
spline models with unstructured variance–covariance (≤5.56%) or random spline (≤5.38%) relative to random slope
(which had Type I error as large as 10.73%) and continuous-time autoregressive order one with exponential variance
function of time (which had Type I error as large as 8.44%). Our simulations included some exploration of mis-
specification of the variance–covariance, but only when the true model was assumed to have an unstructured variance–
covariance. Sandwich estimators may also be used to provide standard errors that are robust to misspecification of the
variance–covariance,29,30 however, we found this to have negligible effect in the trials analyzed (Figure A3).

A limitation of this work is that we have focused exclusively on estimation of the treatment policy estimand using all
available observations submitted to maximum likelihood estimation. These estimates should be robust and unbiased assum-
ing data are missing at random, though missing not at random processes were not explored. Polverejan et al.31 discuss some
alternative estimands and an estimation procedure based on multiple imputation for Alzheimer's clinical trials in the face of
data missing not at random relative to treatment discontinuation and initiation of other therapies. They demonstrate that
maximum likelihood estimators could be biased when on- and off-treatment mean trajectories differ.

However, we have found that the intuition underlying some hypothetical estimands and their estimation
approaches can be problematic. For example, intuition might lead one to believe that mean performance on a cognitive
measure would be improved after the initiation of symptomatic medication for Alzheimer's compared to individuals
not initiating symptomatic medication. Therefore, we might choose to ignore observations after symptomatic medica-
tion and target a hypothetical estimand for the experimental treatment benefit in absence of the symptomatic medica-
tion. Contrary to this intuition, in individuals with mild cognitive impairment, allowing observations after the
initiation of symptomatic medication results in worse cognitive trajectories than censoring those observations.32 This is
likely because individuals are prescribed medication due to their precipitous decline, and the benefit conferred by the
medication is not enough to improve that decline above and beyond those who are not prescribed medication. There-
fore we prefer targeting a treatment policy estimand that is estimated using as much post-randomization data as possi-
ble (regardless of intercurrent therapy) submitted to an appropriate model under the assumption of data missing at
random, and assess the sensitivity to data missing not at random with a delta method tipping point analysis.33 In
Appendix S2, we demonstrate how this can be done using two-level imputation models with the mice R package.34 This
strategy can also be adapted to use the NCS model to target the estimands explored in Polverejan et al.31 This would
require perturbing imputations according to intercurrent events, rather than simply perturbing all imputations in the
active group by the same amount, as in the tipping point approach.

Another limitation is that we have not systematically altered the degree to which visits are off-schedule and the
magnitude of version effects. Simulating visit which are further off-schedule might tend to favor the spline model more,
and vice versa. Similarly, simulating reduced version effects might demonstrate diminishing returns from including this
effect in the model. Instead, we simulated visit intervals observed in actual Alzheimer's trials, or anticipated due to
COVID interruptions, and estimated version effects from actual Alzheimer's trials. Therefore, we are reasonably assured
that the results are relevant for these trials. We recommend additional simulation studies for those interested in com-
paring spline models to MMRM in other therapeutic areas with different outcome measures and study design character-
istics. When we fit the spline models using the scheduled or target time from baseline (not shown), we found that AIC
was the same (for MCI and Insulin) or three points larger (Fyn) than when using actual time. This suggests that for
these trials, the spline structure itself might be conferring more of the model improvement than the use of actual time.

Overall, the natural cubic spline framework exhibits several advantages and very few, if any, disadvantages com-
pared to MMRM or models that assume proportional treatment effects. While the categorical-time MMRM is virtually
assumption-free with regard to the temporal mean trend, the framework cannot accommodate delays in study visits
which makes it incompatible in practice with intention to treat analyses. The natural cubic spline model does make
assumptions about the temporal mean trend, but these assumptions seem to reasonably capture group trends. Adding
cognitive test version effects to the spline model results in very similar estimates as MMRM. Furthermore, imposing the
spline assumptions allows data from delayed visits to be naturally incorporated, improves power relative to MMRM,
and maintains Type I error control. In contrast, the proportional treatment effect assumption is too strong and has been
violated in at least two AD trials. The proportional treatment effect models are also challenging to fit and exhibit unac-
ceptable Type I error.

10 DONOHUE ET AL.
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